DIN 48×48-mm State-of-the-art

Multifunctional Timer

- A wider power supply range reduces the number of timer models kept in stock.
- A wide range of applications through six or four operating modes.
- Reduced power consumption. (Except for H3CR-A8E)
- Enables easy sequence checks through instantaneous outputs for a zero set value at any time range.
- Length, when panel-mounted with a Socket, of 80 mm or less.

- Time Setting Rings enable consistent settings and limit the setting range.
- Panel Covers enable various panel designs.
- PNP input models available.
- Rich variety of inputs: Start, reset, and gate functions (11-pin models and -AP models)

Model Number Structure

■ Model Number Legend

Note: This model number legend includes combinations that are not available. Before ordering, please check the List of Models on page 2 for availability.

H3CR-A $\frac{\square}{1} \frac{\square}{2} \frac{\square}{3}-\frac{\square}{4} \frac{\square}{5}$

1. Number of Pins

None: 11-pin models
8: $\quad 8$-pin models
2. Input Type for 11-pin Models

None: No-voltage input (NPN type)
P: Voltage input (PNP type)
3. Output

None: Relay output (DPDT)
S: Transistor output (NPN/PNP universal use)
E: Relay output (SPDT) with instantaneous relay output (SPDT)
4. Suffix

300: Dual mode models (signal ON/OFF-delay and one-shot)
301: Double time scale (range) models (0.1 s to 600 h)
5. Supply Voltage

100-240AC/100-125DC: 100 to 240 VAC/100 to 125 VDC
24-48AC/12-48DC: 24 to 48 VAC/12 to 48 VDC
24-48AC/DC: 24 to 48 VAC/VDC (Only for H3CR-A8E)

Ordering Information

List of Models

Note: 1. Specify both the model number and supply voltage when ordering.
Example: H3CR-A 100-240AC/100-125DC
——Supply voltage
2. The operating modes are as follows
A: ON-delay
B:
D: Signal OFF-delay
$\begin{array}{ll}\text { B: } & \text { Flicker OFF start } \\ \text { B2: } & \text { Flicker ON start }\end{array}$
E: Interval
C: Signal ON/OFF-delay
J: One-shot

11-pin Models

Output	Supply voltage	Input type	Time range	Operating mode (See note 2)	Model (See note 1.)
Contact	$100 \text { to } 240 \text { VAC }(50 / 60 \mathrm{~Hz}) /$ 100 to 125 VDC	No-voltage input	0.05 s to 300 h	Six multi-modes: A, B, B2, C, D, E	H3CR-A
	$\begin{aligned} & 24 \text { to } 48 \operatorname{VAC}(50 / 60 \mathrm{~Hz}) / \\ & 12 \text { to } 48 \text { VDC } \end{aligned}$				
	$\begin{aligned} & 100 \text { to } 240 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 100 \text { to } 125 \text { VDC } \end{aligned}$			Dual-modes: G, J	H3CR-A-300
	$\begin{aligned} & 24 \text { to } 48 \mathrm{VAC}(50 / 60 \mathrm{~Hz}) / \\ & 12 \text { to } 48 \mathrm{VDC} \end{aligned}$				
	$\begin{aligned} & 100 \text { to } 240 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 100 \text { to } 125 \text { VDC } \end{aligned}$	Voltage input		Six multi-modes: A, B, B2, C, D, E	H3CR-AP
	$\begin{aligned} & 24 \text { to } 48 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 12 \text { to } 48 \text { VDC } \end{aligned}$				
	$100 \text { to } 240 \text { VAC }(50 / 60 \mathrm{~Hz}) /$ 100 to 125 VDC	No-voltage input	0.1 s to 600 h		H3CR-A-301
	$\begin{aligned} & 24 \text { to } 48 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 12 \text { to } 48 \text { VDC } \end{aligned}$				
Transistor (Photocoupler)	$\begin{array}{\|l} 24 \text { to } 48 \operatorname{VAC}(50 / 60 \mathrm{~Hz}) / \\ 12 \text { to } 48 \text { VDC } \end{array}$		0.05 s to 300 h		H3CR-AS

8-pin Models

Output	Supply voltage	Input type	Time range	Operating mode (See note 2)	Model (See note 1.)
Contact	$\begin{aligned} & 100 \text { to } 240 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 100 \text { to } 125 \text { VDC } \end{aligned}$	No-input available	$0.05 \mathrm{~s} \text { to } 300 \mathrm{~h}$	Four multi-modes: A, B2, E, J (Power supply start)	H3CR-A8
	$\begin{aligned} & 24 \text { to } 48 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 12 \text { to } 48 \text { VDC } \end{aligned}$				
	$\begin{aligned} & 100 \text { to } 240 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 100 \text { to } 125 \text { VDC } \end{aligned}$		0.1 s to 600 h		H3CR-A8-301
	$24 \text { to } 48 \text { VAC (} 50 / 60 \mathrm{~Hz} \text {)/ }$ $12 \text { to } 48 \text { VDC }$				
Transistor (Photocoupler)	$\begin{aligned} & 24 \text { to } 48 \text { VAC }(50 / 60 \mathrm{~Hz}) / \\ & 12 \text { to } 48 \text { VDC } \end{aligned}$		0.05 s to 300 h		H3CR-A8S
Time-limit contact and instantaneous contact	100 to 240 VAC $(50 / 60 \mathrm{~Hz})$ / 100 to 125 VDC				H3CR-A8E
	24 to 48 VAC/VDC (50/60 Hz)				

Accessories (Order Separately)

Name/specifications		Models
Flush Mounting Adapter		Y92F-30
		Y92F-73
		Y92F-74
Mounting Track	$50 \mathrm{~cm}(\mathrm{l}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-50N
	$1 \mathrm{~m}(\mathrm{l}) \times 7.3 \mathrm{~mm}(\mathrm{t})$	PFP-100N
	$1 \mathrm{~m}(\mathrm{)} \times 16 \mathrm{~mm}$ (t)	PFP-100N2
End Plate		PFP-M
Spacer		PFP-S
Protective Cover		Y92A-48B
Track Mounting/ Front Connecting Socket	8-pin	P2CF-08
	8-pin, finger safe type	P2CF-08-E
	11-pin	P2CF-11
	11-pin, finger safe type	P2CF-11-E
Back Connecting Socket	8-pin	P3G-08
	8-pin, finger safe type	P3G-08 with Y92A-48G (See note 1)
	11-pin	P3GA-11
	11-pin, finger safe type	P3GA-11 with Y92A-48G (See note 1)
Time Setting Ring	Setting a specific time	Y92S-27
	Limiting the setting range	Y92S-28
Panel Cover (See note 2)	Light gray (5Y7/1)	Y92P-48GL
	Black (N1.5)	Y92P-48GB
	Medium gray (5Y5/1)	Y92P-48GM
Hold-down Clip (See note 3)	For PL08 and PL11 Sockets	Y92H-7
	For PF085A Socket	Y92H-8

Note: 1. Y92A-48G is a finger safe terminal cover which is attached to the P3G-08 or P3GA-11 Socket.
2. The Time Setting Ring and Panel Cover are sold together.
3. Hold-down Clips are sold in sets of two.

Specifications

General

Item	H3CR-A/-AS	H3CR-AP	H3CR-A8/-A8S	H3CR-A8E
Operating mode	A: ON-delay B: Flicker OFF start B2: Flicker ON start C: Signal ON/OFF-delay D: Signal OFF-delay E: Interval G: Signal ON/OFF-delay (Only for H3CR-A-300) J: One-shot (Only for H3CR-A-300)		A: ON-delay (power supply start) B2: Flicker ON start (power supply start) E: Interval (power supply start) J: One-shot (power supply start)	
Pin type	11-pin		8-pin	
Input type	No-voltage input	Voltage input	---	
Time-limit output type	H3CR-A/-A8/-AP: Relay output (DPDT) H3CR-AS/-A8S: Transistor output (NPN/PNP universal)*			Relay output (SPDT)
Instantaneous output type	---			Relay output (SPDT)
Mounting method	DIN track mounting, surface mounting, and flush mounting			
Approved standards	UL508, CSA C22.2 No.14, NK, Lloyds Conforms to EN61812-1 and IEC60664-1 (VDE0110) 4kV/2. Output category according to EN60947-5-1 for Timers with Contact Outputs. Output category according to EN60947-5-2 for Timers with Transistor Outputs.			

[^0]
Time Ranges

Note: When the time setting knob is turned below " 0 " until the point where the time setting knob stops, the output will operate instantaneously at all time range settings.

Standard (0.05-s to 300-h) Models

Time unit		\mathbf{c} (sec)	$\boldsymbol{\operatorname { m i n } (\mathbf { m i n })}$	h (hrs)	$\times \mathbf{1 0} \mathbf{~ h ~ (1 0 ~ h r s) ~}$
Full scale setting	1.2	0.05 to 1.2	0.12 to 1.2	1.2 to 12	
	3	0.3 to 3	3 to 30		
	12	1.2 to 12	12 to 120		
	30	3 to 30	30 to 300		

Double (0.1-s to 600-h) Models

Time unit		\mathbf{s} (sec)	$\boldsymbol{m i n}(\mathbf{m i n})$	h (hrs)
Full scale setting	2.4	0.1 to 2.4	0.24 to 2.4	$\times \mathbf{1 0} \mathbf{~ h ~ (1 0 ~ h r s) ~}$
	6	0.6 to 6	2.4 to 24	
	24	2.4 to 24	6 to 60	
	60	to 60	24 to 240	

Ratings

Rated supply voltage (See notes 1, 2, and 5.)	100 to 240 VAC $(50 / 60 \mathrm{~Hz}) / 100$ to $125 \mathrm{VDC}, 24$ to 48 VAC $(50 / 60 \mathrm{~Hz}) / 12$ to 48 VDC (24 to 48 VAC/VDC for H3CRA8E) (See note3.)
Operating voltage range	85% to 110% of rated supply voltage (90\% to 110% at 12 VDC)
Power reset	Minimum power-opening time: 0.1 s
Input	
Power consumption	H3CR-A/-A8 - 100 to 240 VAC/100 to 125 VDC (When at 240 VAC, 60 Hz) Relay ON: approx. 2.0 VA (1.6 W) Relay OFF: approx. 1.3 VA (1.1 W) - 24 to 48 VAC/12 to 48 VDC (When at 24 VDC) Relay ON: approx. 0.8 W Relay OFF: approx. 0.2 W H3CR-AP (See note 3) - 100 to 240 VAC/100 to 125 VDC (When at 240 VAC, 60 Hz) Relay ON: approx. 2.5 VA (2.2 W) (See note 4.) Relay OFF: approx. 1.8 VA (1.7 W) (See note 4.) - 24 to 48 VAC/12 to 48 VDC (When at 24 VDC) Relay ON: approx. 0.9 W (See note 4.) Relay OFF: approx. 0.3 W (See note 4.) H3CR-A8E - 100 to 240 VAC/100 to 125 VDC (When at 240 VAC, 60 Hz) Relay ON/OFF: approx. 2 VA (0.9 W) - 24 to 48 VAC/VDC (When at 24 VDC) Relay ON/OFF: approx. 0.9 W H3CR-AS/-A8S - 24 to 48 VAC/12 to 48 VDC (When at 24 VDC) Output ON: 0.3 W Output OFF: 0.2 W
Control outputs	Time limit contacts: 5 A at $250 \mathrm{VAC} / 30 \mathrm{VDC}, 0.15 \mathrm{~A}$ at 125 VDC, resistive load $(\cos \phi=1)$ Transistor output: Open collector (NPN/PNP), 100 mA max. at 30 VDC max., residual voltage: 2 V max. Instantaneous contact: 5 A at $250 \mathrm{VAC} / 30 \mathrm{VDC}, 0.15 \mathrm{~A}$ at 125 VDC, resistive load $(\cos \phi=1)$

Note: 1. DC ripple rate: 20% max. if the power supply incorporates a single-phase, full-wave rectifier.
2. Do not use an inverter output as the power supply. Refer to Safety Precautions for All Timers for details.
3. Models with $24-$ to- 48 -VAC or 12 -to- $48-V D C$ power supply have inrush current. Caution is thus required when turning ON and OFF power to the Timer with a non-contact output from a device such as a sensor. (Models with an inrush current of approximately 50 mA and a 24VDC power supply are available (the H3CR-A-302 and H3CR-A8-302).)
4. The values are for when the terminals 2 and 7 and terminals 10 and 6 are short-circuited, and include the consumption current of the input circuit.
5. Refer to Safety Precautions for All Timers when using the Timer together with a 2-wire AC proximity sensor.

Characteristics

Accuracy of operating time	$\pm 0.2 \%$ FS max. ($\pm 0.2 \% \pm 10 \mathrm{~ms} \mathrm{max}$. in a range of 1.2 s)
Setting error	$\pm 5 \% \mathrm{FS} \pm 50 \mathrm{~ms}$ (See note 1)
Reset time	Min. power-opening time: 0.1 s max. Min. pulse width: $\quad 0.05 \mathrm{~s}$ (H3CR-A/-AS)
Reset voltage	10\% max. of rated supply voltage
Influence of voltage	$\pm 0.2 \%$ FS max. ($\pm 0.2 \% \pm 10 \mathrm{~ms} \mathrm{max}$. in a range of 1.2 s)
Influence of temperature	$\pm 1 \%$ FS max. ($\pm 1 \% \pm 10 \mathrm{~ms} \mathrm{max}$. in a range of 1.2 s)
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$
Dielectric strength	2,000 VAC (1,000 VAC for H3CR-A \square S), $50 / 60 \mathrm{~Hz}$ for 1 min (between current-carrying metal parts and exposed non-current-carrying metal parts) 2,000 VAC (1,000 VAC for H3CR-A \square S), $50 / 60 \mathrm{~Hz}$ for 1 min (between control output terminals and operating circuit) 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min (between contacts of different polarities) 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min (between contacts not located next to each other) 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min (between input and control output terminals and operation circuit) for H3CR-AP
Impulse withstand voltage	3 kV (between power terminals) for 100 to $240 \mathrm{VAC} / 100$ to $125 \mathrm{VDC}, 1 \mathrm{kV}$ for 24 to $48 \mathrm{VAC} / 12$ to 48 VDC 4.5 kV (between current-carrying terminal and exposed non-current-carrying metal parts) for 100 to 240 VAC/100 to 125 VDC, 1.5 kV for 24 to 48 VAC/12 to 48 VDC and 24 to 48 VAC/VDC
Noise immunity	$\pm 1.5 \mathrm{kV}$ (between power terminals) and $\pm 600 \mathrm{~V}$ (between no-voltage input terminals), square-wave noise by noise simulator (pulse width: $100 \mathrm{~ns} / 1 \mu \mathrm{~s}, 1$-ns rise)
Static immunity	Malfunction: 8 kV Destruction: 15 kV
Vibration resistance	Destruction: 10 to 55 Hz with $0.75-\mathrm{mm}$ single amplitude each in 3 directions for 2 hours each Malfunction: 10 to 55 Hz with $0.5-\mathrm{mm}$ single amplitude each in 3 directions for 10 minutes each
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 directions Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 directions
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35\% to 85\%
Life expectancy	Mechanical: 20,000,000 operations min. (under no load at 1,800 operations/h) Electrical: $\quad 100,000$ operations min. (5 A at 250 VAC, resistive load at 1,800 operations $/ \mathrm{h}$) (See note 2)
EMC	
Case color	Light gray (Munsell 5Y7/1)
Degree of protection	IP40 (panel surface)
Weight	Approx. 90 g

Note: 1. The value is $\pm 5 \%$ FS +100 ms to -0 ms max. when the C, D, or G mode signal of the H3CR-AP is OFF.
2. Refer to the Life-test Curve.

Life-test Curve

Reference: A maximum current of 0.15 A can be switched at 125 VDC $(\cos \phi=1)$ and a maximum current of 0.1 A can be switched if L / R is 7 ms . In both cases, a life of 100,000 operations can be expected. The minimum applicable load is 10 mA (100 mA for H3CR-A8E) at 5 VDC (failure level: P).

Dimensions

Note: All units are in millimeters unless otherwise indicated
H3CR-A
H3CR-AP

H3CR-AS

H3CR-A8
H3CR-A8S

H3CR-A8E

Dimensions with Set Ring

Time Setting Panel cover
Ring
Dimensions with Front Connecting Socket P2CF-08- $\square /$ P2CF-11- \square

Dimensions with Back Connecting Socket P3G-08/P3GA-11

*These dimensions vary with the kind of DIN track (reference value).

[^0]: *The internal circuits are optically isolated from the output. This enables universal application as NPN or PNP transistor.

